
17
Differential Equations

Many physical phenomena can be modeled using the language of calculus. For example,

observational evidence suggests that the temperature of a cup of tea (or some other liquid)

in a room of constant temperature will cool over time at a rate proportional to the difference

between the room temperature and the temperature of the tea.

In symbols, if t is the time, M is the room temperature, and f(t) is the temperature

of the tea at time t then f ′(t) = k(M − f(t)) where k > 0 is a constant which will depend

on the kind of tea (or more generally the kind of liquid) but not on the room temperature

or the temperature of the tea. This is Newton’s law of cooling and the equation that

we just wrote down is an example of a differential equation. Ideally we would like to

solve this equation, namely, find the function f(t) that describes the temperature over

time, though this often turns out to be impossible, in which case various approximation

techniques must be used. The use and solution of differential equations is an important

field of mathematics; here we see how to solve some simple but useful types of differential

equation.

Informally, a differential equation is an equation in which one or more of the derivatives

of some function appear. Typically, a scientific theory will produce a differential equation

(or a system of differential equations) that describes or governs some physical process, but

the theory will not produce the desired function or functions directly.

Recall from section 6.2 that when the variable is time the derivative of a function y(t)

is sometimes written as ẏ instead of y′; this is quite common in the study of differential

equations.
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17.1 First Order Differential Equations

We start by considering equations in which only the first derivative of the function appears.

DEFINITION 17.1.1 A first order differential equation is an equation of the form

F (t, y, ẏ) = 0. A solution of a first order differential equation is a function f(t) that makes

F (t, f(t), f ′(t)) = 0 for every value of t.

Here, F is a function of three variables which we label t, y, and ẏ. It is understood

that ẏ will explicitly appear in the equation although t and y need not. The term “first

order” means that the first derivative of y appears, but no higher order derivatives do.

EXAMPLE 17.1.2 The equation from Newton’s law of cooling, ẏ = k(M −y) is a first

order differential equation; F (t, y, ẏ) = k(M − y)− ẏ.

EXAMPLE 17.1.3 ẏ = t2+1 is a first order differential equation; F (t, y, ẏ) = ẏ−t2−1.

All solutions to this equation are of the form t3/3 + t+ C.

DEFINITION 17.1.4 A first order initial value problem is a system of equations

of the form F (t, y, ẏ) = 0, y(t0) = y0. Here t0 is a fixed time and y0 is a number. A

solution of an initial value problem is a solution f(t) of the differential equation that also

satisfies the initial condition f(t0) = y0.

EXAMPLE 17.1.5 The initial value problem ẏ = t2 + 1, y(1) = 4 has solution f(t) =

t3/3 + t+ 8/3.

The general first order equation is rather too general, that is, we can’t describe methods

that will work on them all, or even a large portion of them. We can make progress with

specific kinds of first order differential equations. For example, much can be said about

equations of the form ẏ = φ(t, y) where φ is a function of the two variables t and y. Under

reasonable conditions on φ, such an equation has a solution and the corresponding initial

value problem has a unique solution. However, in general, these equations can be very

difficult or impossible to solve explicitly.

EXAMPLE 17.1.6 Consider this specific example of an initial value problem for New-

ton’s law of cooling: ẏ = 2(25− y), y(0) = 40. We first note that if y(t0) = 25, the right

hand side of the differential equation is zero, and so the constant function y(t) = 25 is a

solution to the differential equation. It is not a solution to the initial value problem, since

y(0) 6= 40. (The physical interpretation of this constant solution is that if a liquid is at

the same temperature as its surroundings, then the liquid will stay at that temperature.)
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So long as y is not 25, we can rewrite the differential equation as

dy

dt

1

25− y
= 2

1

25− y
dy = 2 dt,

so
∫

1

25− y
dy =

∫

2 dt,

that is, the two anti-derivatives must be the same except for a constant difference. We can

calculate these anti-derivatives and rearrange the results:

∫

1

25− y
dy =

∫

2 dt

(−1) ln |25− y| = 2t+ C0

ln |25− y| = −2t− C0 = −2t+ C

|25− y| = e−2t+C = e−2teC

y − 25 = ± eCe−2t

y = 25± eCe−2t = 25 + Ae−2t.

Here A = ± eC = ± e−C0 is some non-zero constant. Since we want y(0) = 40, we

substitute and solve for A:
40 = 25 + Ae0

15 = A,

and so y = 25+15e−2t is a solution to the initial value problem. Note that y is never 25, so

this makes sense for all values of t. However, if we allow A = 0 we get the solution y = 25

to the differential equation, which would be the solution to the initial value problem if we

were to require y(0) = 25. Thus, y = 25 + Ae−2t describes all solutions to the differential

equation ẏ = 2(25− y), and all solutions to the associated initial value problems.

Why could we solve this problem? Our solution depended on rewriting the equation

so that all instances of y were on one side of the equation and all instances of t were on the

other; of course, in this case the only t was originally hidden, since we didn’t write dy/dt

in the original equation. This is not required, however.



458 Chapter 17 Differential Equations

EXAMPLE 17.1.7 Solve the differential equation ẏ = 2t(25 − y). This is almost

identical to the previous example. As before, y(t) = 25 is a solution. If y 6= 25,
∫

1

25− y
dy =

∫

2t dt

(−1) ln |25− y| = t2 + C0

ln |25− y| = −t2 − C0 = −t2 + C

|25− y| = e−t2+C = e−t2eC

y − 25 = ± eCe−t2

y = 25± eCe−t2 = 25 + Ae−t2 .

As before, all solutions are represented by y = 25 + Ae−t2 , allowing A to be zero.

DEFINITION 17.1.8 A first order differential equation is separable if it can be written

in the form ẏ = f(t)g(y).

As in the examples, we can attempt to solve a separable equation by converting to the

form
∫

1

g(y)
dy =

∫

f(t) dt.

This technique is called separation of variables. The simplest (in principle) sort of

separable equation is one in which g(y) = 1, in which case we attempt to solve
∫

1 dy =

∫

f(t) dt.

We can do this if we can find an anti-derivative of f(t).

Also as we have seen so far, a differential equation typically has an infinite number

of solutions. Ideally, but certainly not always, a corresponding initial value problem will

have just one solution. A solution in which there are no unknown constants remaining is

called a particular solution.

The general approach to separable equations is this: Suppose we wish to solve ẏ =

f(t)g(y) where f and g are continuous functions. If g(a) = 0 for some a then y(t) = a

is a constant solution of the equation, since in this case ẏ = 0 = f(t)g(a). For example,

ẏ = y2 − 1 has constant solutions y(t) = 1 and y(t) = −1.

To find the nonconstant solutions, we note that the function 1/g(y) is continuous where

g 6= 0, so 1/g has an antiderivative G. Let F be an antiderivative of f . Now we write

G(y) =

∫

1

g(y)
dy =

∫

f(t) dt = F (t) + C,

so G(y) = F (t) + C. Now we solve this equation for y.
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Of course, there are a few places this ideal description could go wrong: we need to

be able to find the antiderivatives G and F , and we need to solve the final equation for

y. The upshot is that the solutions to the original differential equation are the constant

solutions, if any, and all functions y that satisfy G(y) = F (t) + C.

EXAMPLE 17.1.9 Consider the differential equation ẏ = ky. When k > 0, this de-

scribes certain simple cases of population growth: it says that the change in the population

y is proportional to the population. The underlying assumption is that each organism in

the current population reproduces at a fixed rate, so the larger the population the more

new organisms are produced. While this is too simple to model most real populations, it

is useful in some cases over a limited time. When k < 0, the differential equation describes

a quantity that decreases in proportion to the current value; this can be used to model

radioactive decay.

The constant solution is y(t) = 0; of course this will not be the solution to any

interesting initial value problem. For the non-constant solutions, we proceed much as

before:
∫

1

y
dy =

∫

k dt

ln |y| = kt+ C

|y| = ekteC

y = ± eCekt

y = Aekt.

Again, if we allow A = 0 this includes the constant solution, and we can simply say that

y = Aekt is the general solution. With an initial value we can easily solve for A to get

the solution of the initial value problem. In particular, if the initial value is given for time

t = 0, y(0) = y0, then A = y0 and the solution is y = y0e
kt.

Exercises 17.1.

1. Which of the following equations are separable?

a. ẏ = sin(ty)

b. ẏ = etey

c. yẏ = t

d. ẏ = (t3 − t) arcsin(y)

e. ẏ = t2 ln y + 4t3 ln y

2. Solve ẏ = 1/(1 + t2). ⇒
3. Solve the initial value problem ẏ = tn with y(0) = 1 and n ≥ 0. ⇒
4. Solve ẏ = ln t. ⇒
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5. Identify the constant solutions (if any) of ẏ = t sin y. ⇒
6. Identify the constant solutions (if any) of ẏ = tey. ⇒
7. Solve ẏ = t/y. ⇒
8. Solve ẏ = y2 − 1. ⇒
9. Solve ẏ = t/(y3 − 5). You may leave your solution in implicit form: that is, you may stop

once you have done the integration, without solving for y. ⇒
10. Find a non-constant solution of the initial value problem ẏ = y1/3, y(0) = 0, using separation

of variables. Note that the constant function y(t) = 0 also solves the initial value problem.
This shows that an initial value problem can have more than one solution. ⇒

11. Solve the equation for Newton’s law of cooling leaving M and k unknown. ⇒
12. After 10 minutes in Jean-Luc’s room, his tea has cooled to 40◦ Celsius from 100◦ Celsius.

The room temperature is 25◦ Celsius. How much longer will it take to cool to 35◦? ⇒
13. Solve the logistic equation ẏ = ky(M−y). (This is a somewhat more reasonable population

model in most cases than the simpler ẏ = ky.) Sketch the graph of the solution to this
equation when M = 1000, k = 0.002, y(0) = 1. ⇒

14. Suppose that ẏ = ky, y(0) = 2, and ẏ(0) = 3. What is y? ⇒
15. A radioactive substance obeys the equation ẏ = ky where k < 0 and y is the mass of the

substance at time t. Suppose that initially, the mass of the substance is y(0) = M > 0. At
what time does half of the mass remain? (This is known as the half life. Note that the half
life depends on k but not on M .) ⇒

16. Bismuth-210 has a half life of five days. If there is initially 600 milligrams, how much is left
after 6 days? When will there be only 2 milligrams left? ⇒

17. The half life of carbon-14 is 5730 years. If one starts with 100 milligrams of carbon-14,
how much is left after 6000 years? How long do we have to wait before there is less than 2
milligrams? ⇒

18. A certain species of bacteria doubles its population (or its mass) every hour in the lab. The
differential equation that models this phenomenon is ẏ = ky, where k > 0 and y is the
population of bacteria at time t. What is y? ⇒

19. If a certain microbe doubles its population every 4 hours and after 5 hours the total population
has mass 500 grams, what was the initial mass? ⇒

17.2 First Order Homogeneous Linear Equations

A simple, but important and useful, type of separable equation is the first order homo-

geneous linear equation:

DEFINITION 17.2.1 A first order homogeneous linear differential equation is one of

the form ẏ + p(t)y = 0 or equivalently ẏ = −p(t)y.

“Linear” in this definition indicates that both ẏ and y occur to the first power; “ho-

mogeneous” refers to the zero on the right hand side of the first form of the equation.
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EXAMPLE 17.2.2 The equation ẏ = 2t(25 − y) can be written ẏ + 2ty = 50t. This

is linear, but not homogeneous. The equation ẏ = ky, or ẏ − ky = 0 is linear and

homogeneous, with a particularly simple p(t) = −k.

Because first order homogeneous linear equations are separable, we can solve them in

the usual way:

ẏ = −p(t)y
∫

1

y
dy =

∫

−p(t) dt

ln |y| = P (t) + C

y = ± eP (t)+C

y = AeP (t),

where P (t) is an anti-derivative of −p(t). As in previous examples, if we allow A = 0 we

get the constant solution y = 0.

EXAMPLE 17.2.3 Solve the initial value problems ẏ + y cos t = 0, y(0) = 1/2 and

y(2) = 1/2. We start with

P (t) =

∫

− cos t dt = − sin t,

so the general solution to the differential equation is

y = Ae− sin t.

To compute A we substitute:
1

2
= Ae− sin 0 = A,

so the solutions is

y =
1

2
e− sin t.

For the second problem,
1

2
= Ae− sin 2

A =
1

2
esin 2

so the solution is

y =
1

2
esin 2e− sin t.



462 Chapter 17 Differential Equations

EXAMPLE 17.2.4 Solve the initial value problem tẏ + 3y = 0, y(1) = 2, assuming

t > 0. We write the equation in standard form: ẏ + 3y/t = 0. Then

P (t) =

∫

−3

t
dt = −3 ln t

and

y = Ae−3 ln t = At−3.

Substituting to find A: 2 = A(1)−3 = A, so the solution is y = 2t−3.

Exercises 17.2.

Find the general solution of each equation in 1–4.

1. ẏ + 5y = 0 ⇒
2. ẏ − 2y = 0 ⇒
3. ẏ +

y

1 + t2
= 0 ⇒

4. ẏ + t2y = 0 ⇒
In 5–14, solve the initial value problem.

5. ẏ + y = 0, y(0) = 4 ⇒
6. ẏ − 3y = 0, y(1) = −2 ⇒
7. ẏ + y sin t = 0, y(π) = 1 ⇒
8. ẏ + yet = 0, y(0) = e ⇒
9. ẏ + y

√

1 + t4 = 0, y(0) = 0 ⇒
10. ẏ + y cos(et) = 0, y(0) = 0 ⇒
11. tẏ − 2y = 0, y(1) = 4 ⇒
12. t2ẏ + y = 0, y(1) = −2, t > 0 ⇒
13. t3ẏ = 2y, y(1) = 1, t > 0 ⇒
14. t3ẏ = 2y, y(1) = 0, t > 0 ⇒
15. A function y(t) is a solution of ẏ + ky = 0. Suppose that y(0) = 100 and y(2) = 4. Find k

and find y(t). ⇒
16. A function y(t) is a solution of ẏ + tky = 0. Suppose that y(0) = 1 and y(1) = e−13. Find k

and find y(t). ⇒
17. A bacterial culture grows at a rate proportional to its population. If the population is one

million at t = 0 and 1.5 million at t = 1 hour, find the population as a function of time. ⇒
18. A radioactive element decays with a half-life of 6 years. If a block of the element has mass

10 kilograms at t = 0, find the amount of the element at time t. ⇒
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17.3 First Order Linear Equations

As you might guess, a first order linear differential equation has the form ẏ+ p(t)y = f(t).

Not only is this closely related in form to the first order homogeneous linear equation, we

can use what we know about solving homogeneous equations to solve the general linear

equation.

Suppose that y1(t) and y2(t) are solutions to ẏ + p(t)y = f(t). Let g(t) = y1 − y2.

Then
g′(t) + p(t)g(t) = y′1 − y′2 + p(t)(y1 − y2)

= (y′1 + p(t)y1)− (y′2 + p(t)y2)

= f(t)− f(t) = 0.

In other words, g(t) = y1 − y2 is a solution to the homogeneous equation ẏ + p(t)y = 0.

Turning this around, any solution to the linear equation ẏ + p(t)y = f(t), call it y1, can

be written as y2 + g(t), for some particular y2 and some solution g(t) of the homogeneous

equation ẏ+p(t)y = 0. Since we already know how to find all solutions of the homogeneous

equation, finding just one solution to the equation ẏ+p(t)y = f(t) will give us all of them.

How might we find that one particular solution to ẏ+p(t)y = f(t)? Again, it turns out

that what we already know helps. We know that the general solution to the homogeneous

equation ẏ + p(t)y = 0 looks like AeP (t). We now make an inspired guess: consider the

function v(t)eP (t), in which we have replaced the constant parameter A with the function

v(t). This technique is called variation of parameters. For convenience write this as

s(t) = v(t)h(t) where h(t) = eP (t) is a solution to the homogeneous equation. Now let’s

compute a bit with s(t):

s′(t) + p(t)s(t) = v(t)h′(t) + v′(t)h(t) + p(t)v(t)h(t)

= v(t)(h′(t) + p(t)h(t)) + v′(t)h(t)

= v′(t)h(t).

The last equality is true because h′(t) + p(t)h(t) = 0, since h(t) is a solution to the

homogeneous equation. We are hoping to find a function s(t) so that s′(t) + p(t)s(t) =

f(t); we will have such a function if we can arrange to have v′(t)h(t) = f(t), that is,

v′(t) = f(t)/h(t). But this is as easy (or hard) as finding an anti-derivative of f(t)/h(t).

Putting this all together, the general solution to ẏ + p(t)y = f(t) is

v(t)h(t) + AeP (t) = v(t)eP (t) + AeP (t).

EXAMPLE 17.3.1 Find the solution of the initial value problem ẏ+3y/t = t2, y(1) =

1/2. First we find the general solution; since we are interested in a solution with a given
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condition at t = 1, we may assume t > 0. We start by solving the homogeneous equation

as usual; call the solution g:

g = Ae−
∫

(3/t) dt = Ae−3 ln t = At−3.

Then as in the discussion, h(t) = t−3 and v′(t) = t2/t−3 = t5, so v(t) = t6/6. We know

that every solution to the equation looks like

v(t)t−3 + At−3 =
t6

6
t−3 + At−3 =

t3

6
+ At−3.

Finally we substitute to find A:

1

2
=

(1)3

6
+ A(1)−3 =

1

6
+ A

A =
1

2
− 1

6
=

1

3
.

The solution is then

y =
t3

6
+

1

3
t−3.

Here is an alternate method for finding a particular solution to the differential equation,

using an integrating factor. In the differential equation ẏ + p(t)y = f(t), we note that

if we multiply through by a function I(t) to get I(t)ẏ+ I(t)p(t)y = I(t)f(t), the left hand

side looks like it could be a derivative computed by the product rule:

d

dt
(I(t)y) = I(t)ẏ + I ′(t)y.

Now if we could choose I(t) so that I ′(t) = I(t)p(t), this would be exactly the left hand side

of the differential equation. But this is just a first order homogeneous linear equation, and

we know a solution is I(t) = eQ(t), where Q(t) =

∫

p dt; note that Q(t) = −P (t), where

P (t) appears in the variation of parameters method and P ′(t) = −p. Now the modified

differential equation is

e−P (t)ẏ + e−P (t)p(t)y = e−P (t)f(t)

d

dt
(e−P (t)y) = e−P (t)f(t).
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Integrating both sides gives

e−P (t)y =

∫

e−P (t)f(t) dt

y = eP (t)

∫

e−P (t)f(t) dt.

If you look carefully, you will see that this is exactly the same solution we found by variation

of parameters, because e−P (t)f(t) = f(t)/h(t).

Some people find it easier to remember how to use the integrating factor method than

variation of parameters. Since ultimately they require the same calculation, you should

use whichever of the two you find easier to recall. Using this method, the solution of the

previous example would look just a bit different: Starting with ẏ+3y/t = t2, we recall that

the integrating factor is e
∫

3/t = e3 ln t = t3. Then we multiply through by the integrating

factor and solve:
t3ẏ + t33y/t = t3t2

t3ẏ + t23y = t5

d

dt
(t3y) = t5

t3y = t6/6

y = t3/6.

This is the same answer, of course, and the problem is then finished just as before.

Exercises 17.3.

In problems 1–10, find the general solution of the equation.

1. ẏ + 4y = 8 ⇒
2. ẏ − 2y = 6 ⇒
3. ẏ + ty = 5t ⇒
4. ẏ + ety = −2et ⇒
5. ẏ − y = t2 ⇒
6. 2ẏ + y = t ⇒
7. tẏ − 2y = 1/t, t > 0 ⇒
8. tẏ + y =

√
t, t > 0 ⇒

9. ẏ cos t+ y sin t = 1, −π/2 < t < π/2 ⇒
10. ẏ + y sec t = tan t, −π/2 < t < π/2 ⇒
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17.4 Approximation

We have seen how to solve a restricted collection of differential equations, or more ac-

curately, how to attempt to solve them—we may not be able to find the required anti-

derivatives. Not surprisingly, non-linear equations can be even more difficult to solve. Yet

much is known about solutions to some more general equations.

Suppose φ(t, y) is a function of two variables. A more general class of first order

differential equations has the form ẏ = φ(t, y). This is not necessarily a linear first order

equation, since φ may depend on y in some complicated way; note however that ẏ appears

in a very simple form. Under suitable conditions on the function φ, it can be shown that

every such differential equation has a solution, and moreover that for each initial condition

the associated initial value problem has exactly one solution. In practical applications this

is obviously a very desirable property.

EXAMPLE 17.4.1 The equation ẏ = t−y2 is a first order non-linear equation, because

y appears to the second power. We will not be able to solve this equation.

EXAMPLE 17.4.2 The equation ẏ = y2 is also non-linear, but it is separable and can

be solved by separation of variables.

Not all differential equations that are important in practice can be solved exactly, so

techniques have been developed to approximate solutions. We describe one such technique,

Euler’s Method, which is simple though not particularly useful compared to some more

sophisticated techniques.

Suppose we wish to approximate a solution to the initial value problem ẏ = φ(t, y),

y(t0) = y0, for t ≥ t0. Under reasonable conditions on φ, we know the solution exists,

represented by a curve in the t-y plane; call this solution f(t). The point (t0, y0) is of

course on this curve. We also know the slope of the curve at this point, namely φ(t0, y0).

If we follow the tangent line for a brief distance, we arrive at a point that should be almost

on the graph of f(t), namely (t0 + ∆t, y0 + φ(t0, y0)∆t); call this point (t1, y1). Now we

pretend, in effect, that this point really is on the graph of f(t), in which case we again

know the slope of the curve through (t1, y1), namely φ(t1, y1). So we can compute a new

point, (t2, y2) = (t1 + ∆t, y1 + φ(t1, y1)∆t) that is a little farther along, still close to the

graph of f(t) but probably not quite so close as (t1, y1). We can continue in this way,

doing a sequence of straightforward calculations, until we have an approximation (tn, yn)

for whatever time tn we need. At each step we do essentially the same calculation, namely

(ti+1, yi+1) = (ti +∆t, yi + φ(ti, yi)∆t).

We expect that smaller time steps ∆t will give better approximations, but of course it will

require more work to compute to a specified time. It is possible to compute a guaranteed
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upper bound on how far off the approximation might be, that is, how far yn is from f(tn).

Suffice it to say that the bound is not particularly good and that there are other more

complicated approximation techniques that do better.

EXAMPLE 17.4.3 Let us compute an approximation to the solution for ẏ = t − y2,

y(0) = 0, when t = 1. We will use ∆t = 0.2, which is easy to do even by hand, though we

should not expect the resulting approximation to be very good. We get

(t1, y1) = (0 + 0.2, 0 + (0− 02)0.2) = (0.2, 0)

(t2, y2) = (0.2 + 0.2, 0 + (0.2− 02)0.2) = (0.4, 0.04)

(t3, y3) = (0.6, 0.04 + (0.4− 0.042)0.2) = (0.6, 0.11968)

(t4, y4) = (0.8, 0.11968 + (0.6− 0.119682)0.2) = (0.8, 0.23681533952)

(t5, y5) = (1.0, 0.23681533952+ (0.6− 0.236815339522)0.2) = (1.0, 0.385599038513605)

So y(1) ≈ 0.3856. As it turns out, this is not accurate to even one decimal place. Fig-

ure 17.4.1 shows these points connected by line segments (the lower curve) compared to

a solution obtained by a much better approximation technique. Note that the shape is

approximately correct even though the end points are quite far apart.
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Figure 17.4.1 Approximating a solution to ẏ = t− y2, y(0) = 0.

If you need to do Euler’s method by hand, it is useful to construct a table to keep

track of the work, as shown in figure 17.4.2. Each row holds the computation for a single

step: the starting point (ti, yi); the stepsize ∆t; the computed slope φ(ti, yi); the change

in y, ∆y = φ(ti, yi)∆t; and the new point, (ti+1, yi+1) = (ti +∆t, yi +∆y). The starting

point in each row is the newly computed point from the end of the previous row.

It is easy to write a short function in Sage to do Euler’s method; see this Sage work-

sheet.
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(t, y) ∆t φ(t, y) ∆y = φ(t, y)∆t (t+∆t, y +∆y)

(0, 0) 0.2 0 0 (0.2, 0)

(0.2, 0) 0.2 0.2 0.04 (0.4, 0.04)

(0.4, 0.04) 0.2 0.3984 0.07968 (0.6, 0.11968)

(0.6, 0.11968) 0.2 0.58 . . . 0.117 . . . (0.8, 0.236 . . .)

(0.8, 0.236 . . .) 0.2 0.743 . . . 0.148 . . . (1.0, 0.385 . . .)

Figure 17.4.2 Computing with Euler’s Method.

Euler’s method is related to another technique that can help in understanding a dif-

ferential equation in a qualitative way. Euler’s method is based on the ability to compute

the slope of a solution curve at any point in the plane, simply by computing φ(t, y). If

we compute φ(t, y) at many points, say in a grid, and plot a small line segment with that

slope at the point, we can get an idea of how solution curves must look. Such a plot is

called a slope field. A slope field for φ = t − y2 is shown in figure 17.4.3; compare this

to figure 17.4.1. With a little practice, one can sketch reasonably accurate solution curves

based on the slope field, in essence doing Euler’s method visually.

Figure 17.4.3 A slope field for ẏ = t− y2.

Even when a differential equation can be solved explicitly, the slope field can help

in understanding what the solutions look like with various initial conditions. Recall the

logistic equation from exercise 13 in section 17.1, ẏ = ky(M −y): y is a population at time

t, M is a measure of how large a population the environment can support, and k measures

the reproduction rate of the population. Figure 17.4.4 shows a slope field for this equation
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that is quite informative. It is apparent that if the initial population is smaller than M it

rises to M over the long term, while if the initial population is greater than M it decreases

to M . It is quite easy to generate slope fields with Sage; follow the AP link in the figure

caption.

Figure 17.4.4 A slope field for ẏ = 0.2y(10− y).

Exercises 17.4.

In problems 1–4, compute the Euler approximations for the initial value problem for 0 ≤ t ≤ 1
and ∆t = 0.2. If you have access to Sage, generate the slope field first and attempt to sketch the
solution curve. Then use Sage to compute better approximations with smaller values of ∆t.

1. ẏ = t/y, y(0) = 1 ⇒
2. ẏ = t+ y3, y(0) = 1 ⇒
3. ẏ = cos(t+ y), y(0) = 1 ⇒
4. ẏ = t ln y, y(0) = 2 ⇒

17.5 Se
ond Order Homogeneous Equations

A second order differential equation is one containing the second derivative. These are

in general quite complicated, but one fairly simple type is useful: the second order linear

equation with constant coefficients.

EXAMPLE 17.5.1 Consider the intial value problem ÿ− ẏ−2y = 0, y(0) = 5, ẏ(0) = 0.

We make an inspired guess: might there be a solution of the form ert? This seems at least

plausible, since in this case ÿ, ẏ, and y all involve ert.
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If such a function is a solution then

r2ert − rert − 2ert = 0

ert(r2 − r − 2) = 0

(r2 − r − 2) = 0

(r − 2)(r + 1) = 0,

so r is 2 or −1. Not only are f = e2t and g = e−t solutions, but notice that y = Af +Bg

is also, for any constants A and B:

(Af +Bg)′′ − (Af +Bg)′ − 2(Af +Bg) = Af ′′ +Bg′′ − Af ′ −Bg′ − 2Af − 2Bg

= A(f ′′ − f ′ − 2f) +B(g′′ − g′ − 2g)

= A(0) +B(0) = 0.

Can we find A and B so that this is a solution to the initial value problem? Let’s substitute:

5 = y(0) = Af(0) +Bg(0) = Ae0 +Be0 = A+B

and

0 = ẏ(0) = Af ′(0) +Bg′(0) = A2e0 +B(−1)e0 = 2A−B.

So we need to find A and B that make both 5 = A + B and 0 = 2A − B true. This is a

simple set of simultaneous equations: solve B = 2A, substitute to get 5 = A + 2A = 3A.

Then A = 5/3 and B = 10/3, and the desired solution is (5/3)e2t + (10/3)e−t. You now

see why the initial condition in this case included both y(0) and ẏ(0): we needed two

equations in the two unknowns A and B

You should of course wonder whether there might be other solutions; the answer is no.

We will not prove this, but here is the theorem that tells us what we need to know:

THEOREM 17.5.2 Given the differential equation aÿ + bẏ + cy = 0, a 6= 0, consider

the quadratic polynomial ax2 + bx+ c, called the characteristic polynomial. Using the

quadratic formula, this polynomial always has one or two roots, call them r and s. The

general solution of the differential equation is:

(a) y = Aert +Best, if the roots r and s are real numbers and r 6= s.

(b) y = Aert +Btert, if r = s is real.

(c) y = A cos(βt)eαt +B sin(βt)eαt, if the roots r and s are complex numbers α+ βi

and α − βi.
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EXAMPLE 17.5.3 Suppose a mass m is hung on a spring with spring constant k. If the

spring is compressed or stretched and then released, the mass will oscillate up and down.

Because of friction, the oscillation will be damped: eventually the motion will cease. The

damping will depend on the amount of friction; for example, if the system is suspended in

oil the motion will cease sooner than if the system is in air. Using some simple physics, it

is not hard to see that the position of the mass is described by this differential equation:

mÿ + bẏ + ky = 0. Using m = 1, b = 4, and k = 5 we find the motion of the mass. The

characteristic polynomial is x2 + 4x + 5 with roots (−4 ±
√
16− 20)/2 = −2 ± i. Thus

the general solution is y = A cos(t)e−2t + B sin(t)e−2t. Suppose we know that y(0) = 1

and ẏ(0) = 2. Then as before we form two simultaneous equations: from y(0) = 1 we get

1 = A cos(0)e0 +B sin(0)e0 = A. For the second we compute

ÿ = −2Ae−2t cos(t) + Ae−2t(− sin(t))− 2Be−2t sin(t) +Be−2t cos(t),

and then

2 = −2Ae0 cos(0)− Ae0 sin(0)− 2Be0 sin(0) +Be0 cos(0) = −2A+B.

So we get A = 1, B = 4, and y = cos(t)e−2t + 4 sin(t)e−2t.

Here is a useful trick that makes this easier to understand: We have y = (cos t +

4 sin t)e−2t. The expression cos t+ 4 sin t is a bit reminiscent of the trigonometric formula

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) with α = t. Let’s rewrite it a bit as

√
17

(

1√
17

cos t+
4√
17

sin t

)

.

Note that (1/
√
17)2 + (4/

√
17)2 = 1, which means that there is an angle β with cosβ =

1/
√
17 and sinβ = 4/

√
17 (of course, β may not be a “nice” angle). Then

cos t+ 4 sin t =
√
17 (cos t cosβ + sinβ sin t) =

√
17 cos(t− β).

Thus, the solution may also be written y =
√
17e−2t cos(t−β). This is a cosine curve that

has been shifted β to the right; the
√
17e−2t has the effect of diminishing the amplitude of

the cosine as t increases; see figure 17.5.1. The oscillation is damped very quickly, so in the

first graph it is not clear that this is an oscillation. The second graph shows a restricted

range for t.

Other physical systems that oscillate can also be described by such differential equa-

tions. Some electric circuits, for example, generate oscillating current.

EXAMPLE 17.5.4 Find the solution to the intial value problem ÿ − 4ẏ + 4y = 0,

y(0) = −3, ẏ(0) = 1. The characteristic polynomial is x2 − 4x + 4 = (x − 2)2, so there
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Figure 17.5.1 Graph of a damped oscillation.

is one root, r = 2, and the general solution is Ae2t + Bte2t. Substituting t = 0 we get

−3 = A + 0 = A. The first derivative is 2Ae2t + 2Bte2t + Be2t; substituting t = 0

gives 1 = 2A + 0 + B = 2A + B = 2(−3) + B = −6 + B, so B = 7. The solution is

−3e2t + 7te2t.

Exercises 17.5.

1. Verify that the function in part (a) of theorem 17.5.2 is a solution to the differential equation
aÿ + bẏ + cy = 0.

2. Verify that the function in part (b) of theorem 17.5.2 is a solution to the differential equation
aÿ + bẏ + cy = 0.

3. Verify that the function in part (c) of theorem 17.5.2 is a solution to the differential equation
aÿ + bẏ + cy = 0.

4. Solve the initial value problem ÿ − ω2y = 0, y(0) = 1, ẏ(0) = 1, assuming ω 6= 0. ⇒
5. Solve the initial value problem 2ÿ + 18y = 0, y(0) = 2, ẏ(0) = 15. ⇒
6. Solve the initial value problem ÿ + 6ẏ + 5y = 0, y(0) = 1, ẏ(0) = 0. ⇒
7. Solve the initial value problem ÿ − ẏ − 12y = 0, y(0) = 0, ẏ(0) = 14. ⇒
8. Solve the initial value problem ÿ + 12ẏ + 36y = 0, y(0) = 5, ẏ(0) = −10. ⇒
9. Solve the initial value problem ÿ − 8ẏ + 16y = 0, y(0) = −3, ẏ(0) = 4. ⇒

10. Solve the initial value problem ÿ + 5y = 0, y(0) = −2, ẏ(0) = 5. ⇒
11. Solve the initial value problem ÿ + y = 0, y(π/4) = 0, ẏ(π/4) = 2. ⇒
12. Solve the initial value problem ÿ + 12ẏ + 37y = 0, y(0) = 4, ẏ(0) = 0. ⇒
13. Solve the initial value problem ÿ + 6ẏ + 18y = 0, y(0) = 0, ẏ(0) = 6. ⇒
14. Solve the initial value problem ÿ+4y = 0, y(0) =

√
3, ẏ(0) = 2. Put your answer in the form

developed at the end of example 17.5.3. ⇒
15. Solve the initial value problem ÿ + 100y = 0, y(0) = 5, ẏ(0) = 50. Put your answer in the

form developed at the end of example 17.5.3. ⇒
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16. Solve the initial value problem ÿ + 4ẏ + 13y = 0, y(0) = 1, ẏ(0) = 1. Put your answer in the
form developed at the end of example 17.5.3. ⇒

17. Solve the initial value problem ÿ − 8ẏ + 25y = 0, y(0) = 3, ẏ(0) = 0. Put your answer in the
form developed at the end of example 17.5.3. ⇒

18. A mass-spring system mÿ+ bẏ+ky has k = 29, b = 4, and m = 1. At time t = 0 the position
is y(0) = 2 and the velocity is ẏ(0) = 1. Find y(t). ⇒

19. A mass-spring system mÿ + bẏ + ky has k = 24, b = 12, and m = 3. At time t = 0 the
position is y(0) = 0 and the velocity is ẏ(0) = −1. Find y(t). ⇒

20. Consider the differential equation aÿ+ bẏ = 0, with a and b both non-zero. Find the general
solution by the method of this section. Now let g = ẏ; the equation may be written as
aġ + bg = 0, a first order linear homogeneous equation. Solve this for g, then use the
relationship g = ẏ to find y.

21. Suppose that y(t) is a solution to aÿ+ bẏ+ cy = 0, y(t0) = 0, ẏ(t0) = 0. Show that y(t) = 0.

17.6 Se
ond Order Linear Equations

Now we consider second order equations of the form aÿ + bẏ + cy = f(t), with a, b, and

c constant. Of course, if a = 0 this is really a first order equation, so we assume a 6= 0.

Also, much as in exercise 20 of section 17.5, if c = 0 we can solve the related first order

equation aḣ+ bh = f(t), and then solve h = ẏ for y. So we will only examine examples in

which c 6= 0.

Suppose that y1(t) and y2(t) are solutions to aÿ + bẏ + cy = f(t), and consider the

function h = y1 − y2. We substitute this function into the left hand side of the differential

equation and simplify:

a(y1−y2)
′′+b(y1−y2)

′+c(y1−y2) = ay′′1 +by′1+cy1− (ay′′2 +by′2+cy2) = f(t)−f(t) = 0.

So h is a solution to the homogeneous equation aÿ + bẏ + cy = 0. Since we know how

to find all such h, then with just one particular solution y2 we can express all possible

solutions y1, namely, y1 = h+ y2, where now h is the general solution to the homogeneous

equation. Of course, this is exactly how we approached the first order linear equation.

To make use of this observation we need a method to find a single solution y2. This

turns out to be somewhat more difficult than the first order case, but if f(t) is of a certain

simple form, we can find a solution using the method of undetermined coefficients,

sometimes more whimsically called the method of judicious guessing.

EXAMPLE 17.6.1 Solve the differential equation ÿ − ẏ − 6y = 18t2 + 5. The general

solution of the homogeneous equation is Ae3t + Be−2t. We guess that a solution to the

non-homogeneous equation might look like f(t) itself, namely, a quadratic y = at2+ bt+ c.
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Substituting this guess into the differential equation we get

ÿ − ẏ − 6y = 2a− (2at+ b)− 6(at2 + bt+ c) = −6at2 + (−2a− 6b)t+ (2a− b− 6c).

We want this to equal 18t2 + 5, so we need

−6a = 18

−2a− 6b = 0

2a− b− 6c = 5

This is a system of three equations in three unknowns and is not hard to solve: a = −3,

b = 1, c = −2. Thus the general solution to the differential equation is Ae3t + Be−2t −
3t2 + t− 2.

So the “judicious guess” is a function with the same form as f(t) but with undetermined

(or better, yet to be determined) coefficients. This works whenever f(t) is a polynomial.

EXAMPLE 17.6.2 Consider the initial value problem mÿ + ky = −mg, y(0) = 2,

ẏ(0) = 50. The left hand side represents a mass-spring system with no damping, i.e.,

b = 0. Unlike the homogeneous case, we now consider the force due to gravity, −mg,

assuming the spring is vertical at the surface of the earth, so that g = 980. To be specific,

let us take m = 1 and k = 100. The general solution to the homogeneous equation

is A cos(10t) + B sin(10t). For the solution to the non-homogeneous equation we guess

simply a constant y = a, since −mg = −980 is a constant. Then ÿ + 100y = 100a so

a = −980/100 = −9.8. The desired general solution is then A cos(10t) +B sin(10t)− 9.8.

Substituting the initial conditions we get

2 = A− 9.8

50 = 10B

so A = 11.8 and B = 5 and the solution is 11.8 cos(10t) + 5 sin(10t)− 9.8.

More generally, this method can be used when a function similar to f(t) has derivatives

that are also similar to f(t); in the examples so far, since f(t) was a polynomial, so were

its derivatives. The method will work if f(t) has the form p(t)eαt cos(βt)+ q(t)eαt sin(βt),

where p(t) and q(t) are polynomials; when α = β = 0 this is simply p(t), a polynomial.

In the most general form it is not simple to describe the appropriate judicious guess; we

content ourselves with some examples to illustrate the process.

EXAMPLE 17.6.3 Find the general solution to ÿ+7ẏ+10y = e3t. The characteristic

equation is r2 + 7r + 10 = (r + 5)(r + 2), so the solution to the homogeneous equation is
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Ae−5t + Be−2t. For a particular solution to the inhomogeneous equation we guess Ce3t.

Substituting we get

9Ce3t + 21Ce3t + 10Ce3t = e3t40C.

When C = 1/40 this is equal to f(t) = e3t, so the solution is Ae−5t+Be−2t+(1/40)e3t.

EXAMPLE 17.6.4 Find the general solution to ÿ+7ẏ+10y = e−2t. Following the last

example we might guess Ce−2t, but since this is a solution to the homogeneous equation

it cannot work. Instead we guess Cte−2t. Then

(−2Ce−2t − 2Ce−2t + 4Cte−2t) + 7(Ce−2t − 2Cte−2t) + 10Cte−2t = e−2t(−3C).

Then C = −1/3 and the solution is Ae−5t +Be−2t − (1/3)te−2t.

In general, if f(t) = ekt and k is one of the roots of the characteristic equation, then

we guess Ctekt instead of Cekt. If k is the only root of the characteristic equation, then

Ctekt will not work, and we must guess Ct2ekt.

EXAMPLE 17.6.5 Find the general solution to ÿ − 6ẏ + 9y = e3t. The characteristic

equation is r2 − 6r+ 9 = (r− 3)2, so the general solution to the homogeneous equation is

Ae3t +Bte3t. Guessing Ct2e3t for the particular solution, we get

(9Ct2e3t + 6Cte3t + 6Cte3t + 2Ce3t)− 6(3Ct2e3t + 2Cte3t) + 9Ct2e3t = e3t2C.

The solution is thus Ae3t +Bte3t + (1/2)t2e3t.

It is common in various physical systems to encounter an f(t) of the form a cos(ωt) +

b sin(ωt).

EXAMPLE 17.6.6 Find the general solution to ÿ + 6ẏ + 25y = cos(4t). The roots

of the characteristic equation are −3 ± 4i, so the solution to the homogeneous equation

is e−3t(A cos(4t) + B sin(4t)). For a particular solution, we guess C cos(4t) + D sin(4t).

Substituting as usual:

(−16C cos(4t) +−16D sin(4t)) + 6(−4C sin(4t) + 4D cos(4t)) + 25(C cos(4t) +D sin(4t))

= (24D + 9C) cos(4t) + (−24C + 9D) sin(4t).

To make this equal to cos(4t) we need

24D + 9C = 1

9D − 24C = 0

which gives C = 1/73 andD = 8/219. The full solution is then e−3t(A cos(4t)+B sin(4t))+

(1/73) cos(4t) + (8/219) sin(4t).
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The function e−3t(A cos(4t) +B sin(4t)) is a damped oscillation as in example 17.5.3,

while (1/73) cos(4t)+ (8/219) sin(4t) is a simple undamped oscillation. As t increases, the

sum e−3t(A cos(4t) +B sin(4t)) approaches zero, so the solution

e−3t(A cos(4t) +B sin(4t)) + (1/73) cos(4t) + (8/219) sin(4t)

becomes more and more like the simple oscillation (1/73) cos(4t)+ (8/219) sin(4t)—notice

that the initial conditions don’t matter to this long term behavior. The damped portion

is called the transient part of the solution, and the simple oscillation is called the steady

state part of the solution. A physical example is a mass-spring system. If the only force

on the mass is due to the spring, then the behavior of the system is a damped oscillation.

If in addition an external force is applied to the mass, and if the force varies according to

a function of the form a cos(ωt) + b sin(ωt), then the long term behavior will be a simple

oscillation determined by the steady state part of the general solution; the initial position

of the mass will not matter.

As with the exponential form, such a simple guess may not work.

EXAMPLE 17.6.7 Find the general solution to ÿ + 16y = − sin(4t). The roots

of the characteristic equation are ±4i, so the solution to the homogeneous equation is

A cos(4t) + B sin(4t). Since both cos(4t) and sin(4t) are solutions to the homogeneous

equation, C cos(4t) +D sin(4t) is also, so it cannot be a solution to the non-homogeneous

equation. Instead, we guess Ct cos(4t) +Dt sin(4t). Then substituting:

(−16Ct cos(4t)− 16D sin(4t) + 8D cos(4t)− 8C sin(4t))) + 16(Ct cos(4t) +Dt sin(4t))

= 8D cos(4t)− 8C sin(4t).

Thus C = 1/8, D = 0, and the solution is C cos(4t) +D sin(4t) + (1/8)t cos(4t).

In general, if f(t) = a cos(ωt) + b sin(ωt), and ±ωi are the roots of the characteristic

equation, then instead of C cos(ωt) +D sin(ωt) we guess Ct cos(ωt) +Dt sin(ωt).

Exercises 17.6.

Find the general solution to the differential equation.

1. ÿ − 10ẏ + 25y = cos t ⇒
2. ÿ + 2

√
2ẏ + 2y = 10 ⇒

3. ÿ + 16y = 8t2 + 3t− 4 ⇒
4. ÿ + 2y = cos(5t) + sin(5t) ⇒
5. ÿ − 2ẏ + 2y = e2t ⇒
6. ÿ − 6y + 13 = 1 + 2t+ e−t ⇒
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7. ÿ + ẏ − 6y = e−3t ⇒
8. ÿ − 4ẏ + 3y = e3t ⇒
9. ÿ + 16y = cos(4t) ⇒

10. ÿ + 9y = 3 sin(3t) ⇒
11. ÿ + 12ẏ + 36y = 6e−6t ⇒
12. ÿ − 8ẏ + 16y = −2e4t ⇒
13. ÿ + 6ẏ + 5y = 4 ⇒
14. ÿ − ẏ − 12y = t ⇒
15. ÿ + 5y = 8 sin(2t) ⇒
16. ÿ − 4y = 4e2t ⇒

Solve the initial value problem.

17. ÿ − y = 3t+ 5, y(0) = 0, ẏ(0) = 0 ⇒
18. ÿ + 9y = 4t, y(0) = 0, ẏ(0) = 0 ⇒
19. ÿ + 12ẏ + 37y = 10e−4t, y(0) = 4, ẏ(0) = 0 ⇒
20. ÿ + 6ẏ + 18y = cos t− sin t, y(0) = 0, ẏ(0) = 2 ⇒
21. Find the solution for the mass-spring equation ÿ + 4ẏ + 29y = 689 cos(2t). ⇒
22. Find the solution for the mass-spring equation 3ÿ + 12ẏ + 24y = 2 sin t. ⇒
23. Consider the differential equation mÿ + bẏ + ky = cos(ωt), with m, b, and k all positive and

b2 < 2mk; this equation is a model for a damped mass-spring system with external driving
force cos(ωt). Show that the steady state part of the solution has amplitude

1
√

(k −mω2)2 + ω2b2
.

Show that this amplitude is largest when ω =

√
4mk − 2b2

2m
. This is the resonant frequency

of the system.

17.7 Se
ond Order Linear Equations, take two

The method of the last section works only when the function f(t) in aÿ + bẏ + cy = f(t)

has a particularly nice form, namely, when the derivatives of f look much like f itself. In

other cases we can try variation of parameters as we did in the first order case.

Since as before a 6= 0, we can always divide by a to make the coefficient of ÿ equal

to 1. Thus, to simplify the discussion, we assume a = 1. We know that the differential

equation ÿ+bẏ+cy = 0 has a general solution Ay1+By2. As before, we guess a particular

solution to ÿ + bẏ + cy = f(t); this time we use the guess y = u(t)y1 + v(t)y2. Compute

the derivatives:

ẏ = u̇y1 + uẏ1 + v̇y2 + vẏ2

ÿ = üy1 + u̇ẏ1 + u̇ẏ1 + uÿ1 + v̈y2 + v̇ẏ2 + v̇ẏ2 + vÿ2.
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Now substituting:

ÿ + bẏ + cy = üy1 + u̇ẏ1 + u̇ẏ1 + uÿ1 + v̈y2 + v̇ẏ2 + v̇ẏ2 + vÿ2

+ bu̇y1 + buẏ1 + bv̇y2 + bvẏ2 + cuy1 + cvy2

= (uÿ1 + buẏ1 + cuy1) + (vÿ2 + bvẏ2 + cvy2)

+ b(u̇y1 + v̇y2) + (üy1 + u̇ẏ1 + v̈y2 + v̇ẏ2) + (u̇ẏ1 + v̇ẏ2)

= 0 + 0 + b(u̇y1 + v̇y2) + (üy1 + u̇ẏ1 + v̈y2 + v̇ẏ2) + (u̇ẏ1 + v̇ẏ2).

The first two terms in parentheses are zero because y1 and y2 are solutions to the associated

homogeneous equation. Now we engage in some wishful thinking. If u̇y1 + v̇y2 = 0 then

also üy1+ u̇ẏ1 + v̈y2+ v̇ẏ2 = 0, by taking derivatives of both sides. This reduces the entire

expression to u̇ẏ1 + v̇ẏ2. We want this to be f(t), that is, we need u̇ẏ1 + v̇ẏ2 = f(t). So

we would very much like these equations to be true:

u̇y1 + v̇y2 = 0

u̇ẏ1 + v̇ẏ2 = f(t).

This is a system of two equations in the two unknowns u̇ and v̇, so we can solve as usual to

get u̇ = g(t) and v̇ = h(t). Then we can find u and v by computing antiderivatives. This is

of course the sticking point in the whole plan, since the antiderivatives may be impossible

to find. Nevertheless, this sometimes works out and is worth a try.

EXAMPLE 17.7.1 Consider the equation ÿ−5ẏ+6y = sin t. We can solve this by the

method of undetermined coefficients, but we will use variation of parameters. The solution

to the homogeneous equation is Ae2t + Be3t, so the simultaneous equations to be solved

are
u̇e2t + v̇e3t = 0

2u̇e2t + 3v̇e3t = sin t.

If we multiply the first equation by 2 and subtract it from the second equation we get

v̇e3t = sin t

v̇ = e−3t sin t

v = − 1

10
(3 sin t+ cos t)e−3t,

using integration by parts. Then from the first equation:

u̇ = −e−2tv̇e3t = −e−2te−3t sin(t)e3t = −e−2t sin t

u =
1

5
(2 sin t+ cos t)e−2t.
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Now the particular solution we seek is

ue2t + ve3t =
1

5
(2 sin t+ cos t)e−2te2t − 1

10
(3 sin t+ cos t)e−3te3t

=
1

5
(2 sin t+ cos t)− 1

10
(3 sin t+ cos t)

=
1

10
(sin t+ cos t),

and the solution to the differential equation is Ae2t + Be3t + (sin t + cos t)/10. For com-

parison (and practice) you might want to solve this using the method of undetermined

coefficients.

EXAMPLE 17.7.2 The differential equation ÿ− 5ẏ+ 6y = et sin t can be solved using

the method of undetermined coefficients, though we have not seen any examples of such a

solution. Again, we will solve it by variation of parameters. The equations to be solved

are
u̇e2t + v̇e3t = 0

2u̇e2t + 3v̇e3t = et sin t.

If we multiply the first equation by 2 and subtract it from the second equation we get

v̇e3t = et sin t

v̇ = e−3tet sin t = e−2t sin t

v = −1

5
(2 sin t+ cos t)e−2t.

Then substituting we get

u̇ = −e−2tv̇e3t = −e−2te−2t sin(t)e3t = −e−t sin t

u =
1

2
(sin t+ cos t)e−t.

The particular solution is

ue2t + ve3t =
1

2
(sin t+ cos t)e−te2t − 1

5
(2 sin t+ cos t)e−2te3t

=
1

2
(sin t+ cos t)et − 1

5
(2 sin t+ cos t)et

=
1

10
(sin t+ 3 cos t)et,

and the solution to the differential equation is Ae2t +Be3t + et(sin t+ 3 cos t)/10.
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EXAMPLE 17.7.3 The differential equation ÿ − 2ẏ + y = et/t2 is not of the form

amenable to the method of undetermined coefficients. The solution to the homogeneous

equation is Aet +Btet and so the simultaneous equations are

u̇et + v̇tet = 0

u̇et + v̇tet + v̇et =
et

t2
.

Subtracting the equations gives

v̇et =
et

t2

v̇ =
1

t2

v = −1

t
.

Then substituting we get

u̇et = −v̇tet = − 1

t2
tet

u̇ = −1

t

u = − ln t.

The solution is Aet +Btet − et ln t− et.

Exercises 17.7.

Find the general solution to the differential equation using variation of parameters.

1. ÿ + y = tanx ⇒
2. ÿ + y = e2t ⇒
3. ÿ + 4y = sec x ⇒
4. ÿ + 4y = tan x ⇒
5. ÿ + ẏ − 6y = t2e2t ⇒
6. ÿ − 2ẏ + 2y = et tan(t) ⇒
7. ÿ − 2ẏ + 2y = sin(t) cos(t) (This is rather messy when done by variation of parameters;

compare to undetermined coefficients.) ⇒


